Package: addr (via r-universe)

January 10, 2025

Title Clean, Parse, Harmonize, Match, and Geocode Messy Real-World
Addresses

Version 0.6.0

Description Addresses that were not validated at the time of
collection are often heterogenously formatted, making them
difficult to compare or link to other sets of addresses. The
addr package is designed to clean character strings of
addresses, use the “usaddress” library to tag address
components, and paste together select components to create a
normalized address. Normalized addresses can be hashed to
create hashdresses that can be used to merge with other sets of
addresses.

URL https://github.com/cole-brokamp/addr,

https://cole-brokamp.github.io/addr/

BugReports https://github.com/cole-brokamp/addr/issues
License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0), sf, s2, tidyr

Imports purrr, cli, stringr, dplyr, glue, fs, tibble, rlang, vctrs,
methods, stringdist, zeallot

SystemRequirements Cargo (Rust's package manager), rustc
Config/testthat/edition 3

Config/testthat/parallel true

Config/testthat/start-first addr_match*, s2_join_tiger_bg
Depends R (>=3.5.0)

Config/rextendr/version 0.3.1

Config/pak/sysreqs make libicu-dev

Repository https://geomarker-io.r-universe.dev

https://github.com/cole-brokamp/addr
https://cole-brokamp.github.io/addr/
https://github.com/cole-brokamp/addr/issues

2 addr

RemoteUrl https://github.com/geomarker-io/addr
RemoteRef HEAD
RemoteSha a814cfa2008f0563726bb1740af911d7f3023d8e

Contents
addr e e e 2
addr_match e e 4
addr_match_geocode 5
addr_match_tiger_street_ranges et e e e e e e 7
addr_tag L 8
cagis_addr e 9
clean_address_text e e 10
elh_data e e e 10
expand_poSt_tyPe oo e e e 11
get_tiger_block_groups L 12
get_tiger_Street_ranges v . e e e e e e e 12
S2_jJoin_tiger_bg e e e e 13
HET_StAtES . . o v v o e e e e e e e e e e e e e e e e e e 13
usaddress_tag L. L e e e e 14
voter_addresses e e e e e e 14

Index 15

addr Create a new addr vector
Description

An addr vector is created by converting messy, real-world mailing addresses in a character vector
into a list of standardized address tags that behaves like a vector. addr() (and as_addr()) vec-
tors are a list of address tags under the hood, constructed by tagging address components using
addr_tag() and combining them into specific fields:

e street_number: AddressNumber

e street_name: StreetNamePreType, StreetNamePreDirectional, StreetName

e street_type: StreetNamePostType, StreetNamePostDirectional

e city: PlaceName

* state: StateName

e zip_code: ZipCode

addr 3

Usage

addr(
x = character(),
clean_address_text = TRUE,
expand_street_type = TRUE,
abbrev_cardinal_dir = TRUE,
clean_zip_code = TRUE

as_addr(x, ...)

Arguments

X a character vector of address strings

clean_address_text
logical; use clean_address_text() to clean address text prior to tagging?

expand_street_type
logical; use expand_post_type() to expand StreetNamePostType tags? (e.g.,
"Ave" -> "Avenue")

abbrev_cardinal_dir
logical; abbreviate cardinal directions? (e.g., "west" -> "w")

clean_zip_code logical; remove any non-digit (or hyphen) characters and truncate tagged ZIP
Code to 5 characters?

used to pass arguments in as_addr to underlying addr ()

Details

In addition to the cleaning steps described in the arguments, the street number is coerced to a
numeric after removing non-numeric characters. See addr_tag() for details on address component

tagging.

In the case of an address having more than one word for a tag (e.g., "Riva Ridge" for StreetName),
then these are concatenated together, separated by a space in the order they appeared in the address.

Compared to using addr (), as_addr () processes input character strings such that parsing is done
once per unique input, usually speeding up address parsing in real-world datasets where address
strings are often duplicated across observations.

Examples

as_addr(c("3333 Burnet Ave Cincinnati OH 45229", "1324 Burnet Ave Cincinnati OH 45229"))

4 addr_match

addr_match matching addr vectors

Description

For an addr vector, the string distances are calculated between a reference addr vector (ref_addr).
A list of matching reference addr vectors less than or equal to the specified optimal string alignment
distances are returned. See stringdist::stringdist-metrics for more details on string metrics
and the optimal string alignment (osa) method.

Usage

addr_match(
X?
ref_addr,
stringdist_match = c("osa_lt_1", "exact"),
match_street_type = TRUE,
simplify = TRUE

)
addr_match_street_name_and_number(
X,
ref_addr,
stringdist_match = c("osa_lt_1", "exact"),

match_street_type = TRUE,
simplify = TRUE

)

addr_match_street(
X’
ref_addr,
stringdist_match = c("osa_lt_1", "exact"),
match_street_type = TRUE

)

Arguments
X an addr vector to match
ref_addr an addr vector to search for matches in

stringdist_match
method for determining string match of street name: "osa_It_1" requires an op-
timized string distance less than 1; "exact" requires an exact match
match_street_type
logical; require street type to be identical to match?

simplify logical; randomly select one addr from multi-matches and return an addr() vec-
tor instead of a list? (empty addr vectors and NULL values are converted to

NA)

https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance#Optimal_string_alignment_distance

addr_match_geocode 5

Value

for addr_match() and addr_match_street_name_number (), a named list of possible addr matches
for each addr in x

for addr_match_street, a list of possible addr matches for each addr in x (as ref_addr indices)

Examples

addr(c("3333 Burnet Ave Cincinnati OH 45229", "5130 RAPID RUN RD CINCINNATI OHIO 45238")) |>
addr_match(cagis_addr()$cagis_addr)

addr(c("3333 Burnet Ave Cincinnati OH 45229", "5130 RAPID RUN RD CINCINNATI OHIO 45238")) |>
addr_match(cagis_addr()$cagis_addr, simplify = FALSE) |>

tibble::enframe(name = "input_addr"”, value = "ca") |>
dplyr::mutate(ca = purrr::list_c(ca)) |>
dplyr::left_join(cagis_addr(), by = c("ca” = "cagis_addr")) |>

tidyr::unnest(cols = c(cagis_addr_data)) |>
dplyr::select(-ca, -cagis_address)

addr_match_geocode Geocode addr vectors

Description

Addresses are attempted to be matched to reference geographies using different methods associated
with decreasing levels of precision in the order listed below. Each method generates matched s2
cell identifiers differently and is recorded in the match_method column of the returned tibble:

1. ref_addr: reference s2 cell from direct match to reference address

tiger_range: centroid of street-matched TIGER address ranges containing street number

tiger_street: centroid of street-matched TIGER address ranges closest to the street number

Rl

none: unmatched using all previous approaches; return missing s2 cell identifier

Usage
addr_match_geocode(
X,
ref_addr = cagis_addr()$cagis_addr,
ref_s2,
county = "39061",
year = "2022"

6 addr_match_geocode

Arguments
X an addr vector (or character vector of address strings) to geocode
ref_addr an addr vector to search for matches in
ref_s2 a s2_cell vector of locations for each ref addr
county character county identifer for TIGER street range files to search for matches in
year character year for TIGER street range files to search for matches in
Details

Performance was compared to the degauss geocoder (see /inst/compare_geocoding_to_degauss.R)
using real-world addresses in voter_addresses(). Match success rates were similar, but De-
GAUSS matched about 5% more of the addresses. These differences are sensitive to the match
criteria considered for DeGAUSS (here precision of 'range’ & score > 0.7 or precision of ’street’ &
score > (0.55):

addr_matched degauss_matched n perc
TRUE TRUE 224714 92.8%
FALSE TRUE 13407 5.5%
FALSE FALSE 2993 1.2%
TRUE FALSE 1019 0.4%

Among those that were geocoded by both, 97.7% were geocoded to the same census tract, and
96.6% to the same block group:

ct_agree bg_agree n s2_dist_ptiles (5th, 25th, 50th, 75th, 95th) perc
TRUE TRUE 217179 14.7,24.3, 39, 68.9, 153.6 96.6%
FALSE FALSE 4805 21.6,39.2, 158.9, 5577.9, 16998.8 2.1%
TRUE FALSE 2730 19.6,28.6,41.2,94.8,571.8 1.2%

Value

a tibble with columns: addr contains x converted to an addr vector, s2 contains the resulting
geocoded s2 cells as an s2cell vector, match_method is a factor with levels described above

Examples

set.seed(1)
cagis_s2 <-
cagis_addr()$cagis_addr_data |>
purrr::modify_if(\(.) length(.) > @ && nrow(.) > 1, dplyr::slice_sample, n = 1) [>
purrr::map_vec(purrr::pluck, "cagis_s2", .default = NA, .ptype = s2::s2_cell())
addr_match_geocode(x = sample(voter_addresses(), 100), ref_s2 = cagis_s2) |>
print(n = 100)

addr_match_tiger_street_ranges 7

addr_match_tiger_street_ranges
Match an addr vector to TIGER street ranges

Description

Match an addr vector to TIGER street ranges

Usage
addr_match_tiger_street_ranges(
X,
county = "39061",
year = "2022",
street_only_match = c("none”, "all"”, "closest"),
summarize = c("none”, "union"”, "centroid")
)
Arguments
X an addr vector to match
county character string of county identifier
year year of tigris product

street_only_match

for addresses that match a TIGER street name, but have street numbers that don’t
intersect with ranges of potential street numbers, return "none”, "all", or the
"closest"” range geographies

summarize optionally summarize matched street ranges as their union or centroid

Details

To best parse street names and types, this function appends dummy address components just for the
purposes of matching tiger street range names (e.g., 1234 {tiger_street_name} Anytown AB 00000)

Value

a list of matched tigris street range tibbles; a NULL value indicates that no street name was matched;
if street_only_match is FALSE, a street range tibble with zero rows indicates that although a
street was matched, there was no range containing the street number

Examples
my_addr <- as_addr(c("224 Woolper Ave", "3333 Burnet Ave"”, "33333 Burnet Ave”, "609 Walnut St"))
addr_match_tiger_street_ranges(my_addr, county = "39061", street_only_match = "all")

addr_match_tiger_street_ranges(my_addr, county = "39061", summarize = "centroid")

8 addr_tag

addr_match_tiger_street_ranges(my_addr, county = "39061",
street_only_match = "closest”, summarize = "centroid"”) |>
dplyr::bind_rows() |>
dplyr::mutate(census_bg_id = s2_join_tiger_bg(s2::as_s2_cell(s2_geography)))

addr_tag Tag components of an address string

Description

The address components are tagged using a rust port of usaddress. Component names are based
upon the United States Thoroughfare, Landmark, and Postal Address Data Standard.

Usage

addr_tag(x, clean_address_text = TRUE)

Arguments

X a character vector of addresses
clean_address_text

logical; use clean_address_text() to clean addresses prior to tagging?

Details
Possible address labels include:

* AddressNumberPrefix

* AddressNumberSuffix

* AddressNumber

e BuildingName

* CornerOf

e IntersectionSeparator
* LandmarkName

* NotAddress

e Occupancyldentifier

* OccupancyType

* PlaceName

* Recipient

* StateName

e StreetNamePostDirectional

* StreetNamePostType

https://github.com/boydjohnson/usaddress-rs
https://github.com/datamade/usaddress
https://www.fgdc.gov/standards/projects/address-data

cagis_addr 9

e StreetNamePreDirectional
* StreetNamePreModifier
¢ StreetNamePreType

* StreetName

* SubaddressIdentifier
* SubaddressType

* USPSBoxGroupID

* USPSBoxGroupType

e USPSBoxID

* USPSBoxType

e ZipCode

Find more information about the definitions here

Value

a list, the same length as x, of named character vectors of address component tags; each vector
contains all space-separated elements of the cleaned address and are each named based on inferred
address labels (see Details)

Examples

addr_tag(c("290 Ludlow Avenue Apt #2 Cincinnati OH 45220", "3333 Burnet Ave Cincinnati OH 45219"))

cagis_addr CAGIS Addresses

Description

CAGIS Addresses

Usage
cagis_addr()

Value

An example tibble created from the CAGIS addresses with a pre-calculated, unique cagis_addr
vector column. The cagis_addr_data column is a list of tibbles because one CAGIS address
can correspond to multiple parcel identifiers and address-level data (place, type, s2, etc.). See
inst/make_cagis_addr.R for source code to create data, including filtering criteria:

* use only addresses that have STATUS of ASSIGNED or USING and are not orphaned (ORPHANFLG
== "N”)

» omit addresses with ADDRTYPEs that are milemarkers (MM), parks (PAR), infrastructure projects
(PRJ), cell towers (CTW), vacant or commercial lots (LOT), and other miscellaneous non-residential
addresses (MIS, RR, TBA)

e s2 cell is derived from LONGITUDE and LATITUDE fields in CAGIS address database

https://www.fgdc.gov/schemas/address/

10 elh_data

Examples

cagis_addr()

clean_address_text clean address text

Description

remove excess whitespace; keep only letters, numbers, and -

Usage

clean_address_text(.x)

Arguments

X a vector of address character strings

Value

a vector of cleaned addresses

Examples

clean_address_text(c(
"3333 Burnet Ave Cincinnati OH 45219",
"33_33 Burnet Ave. Cincinnati OH 45219",
"33\\33 B\"urnet Ave; Cil!ncinn&=*ati OH 45219",
"3333 Burnet Ave Cincinnati OH 45219",
"33_33 Burnet Ave. Cincinnati OH 45219"

))

elh_data Example real-world data with line-one-only addresses

Description

The Cincinnati Evicition Hotspots data was downloaded from Eviction Labs and contains character-
istics of the top 100 buildings that are responsible for about 25% of all eviction filings in Cincinnati
(from their "current through 8-31-2024" release).

Usage
elh_data()

https://evictionlab.org/uploads/cincinnati_hotspots_media_report.csv

expand_post_type 11

Details

https://evictionlab.org/eviction-tracking/cincinnati-oh/

Value

a tibble with 100 rows and 9 columns

Examples

elh_data()

expand_post_type Expand street name post type

Description

Abbreviations of street type (e.g., "Ave", "St") are converted to expanded versions (e.g., "Avenue",
"Street").

Usage

expand_post_type(x)

Arguments

X character vector of StreetnamePostType abbreviations

Value

a character vector of the same length containing the expanded street name post type

Examples

expand_post_type(c("ave”, "av", "Avenue”, "tl"))

12 get_tiger_street_ranges

get_tiger_block_groups
get s2_geography for census block groups

Description

get s2_geography for census block groups

Usage

get_tiger_block_groups(state, year)

Arguments

state census FIPS state identifier

year vintage of TIGER/Line block group geography files
Value

a tibble with GEOID and s2_geography columns

Examples

get_tiger_block_groups(state = "39", year = "2022")

get_tiger_street_ranges
Get tigris street range geography files from census.gov

Description
Downloaded files are cached in tools: :R_user_dir("addr”, "cache"). Street ranges with miss-
ing minimum or maximum address numbers are excluded.

Usage

get_tiger_street_ranges(county, year = "2022")

Arguments
county character string of county identifier
year year of tigris product

Value

a list of tibbles, one for each street name, with TLID, s2_geography, from, and to columns

s2_join_tiger_bg 13

Examples

Sys.setenv("R_USER_CACHE_DIR" = tempfile())
get_tiger_street_ranges(”39061")[1001:1004]

s2_join_tiger_bg Tiger Block Groups

Description

Get the identifier of the closest census block group based on the intersection of the s2 cell locations
with the the US Census TIGER/Line shapefiles

Usage

s2_join_tiger_bg(x, year = as.character(2013:2023))

Arguments

X s2_cell vector

year vintage of TIGER/Line block group geography files
Value

character vector of matched census block group identifiers

Examples

s2_join_tiger_bg(x = s2::as_s2_cell(c("8841b39a7c46e25f", "8841a45555555555")), year = "2023")

tiger_states get s2_geography for census states

Description

get s2_geography for census states

Usage

tiger_states(year)

Arguments

year vintage of TIGER/Line block group geography files

https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html

14

Value

a tibble with GEOID and s2_geography columns

Examples

tiger_states(year = "2022")

voter_addresses

usaddress_tag Return list of lists of address tags to R.

Description

Return list of lists of address tags to R.

Usage

usaddress_tag(input)

Arguments
input character string of addresses
voter_addresses Example real-world addresses
Description

The voter_addresses data was generated as an example character vector of real-world addresses.
These addresses were downloaded from the Hamilton County, Ohio voter registration database on
2024-09-12. See inst/make_example_addresses.R for more details. AddressPreDirectional,
AddressNumber, AddressStreet, AddressSuffix, CityName, "OH", and AddressZip are pasted
together to create 242,133 unique addresses of registered voters in Hamilton County, OH.

Usage

voter_addresses()

Value

a character vector

Examples

voter_addresses() |>
head()

Index

addr, 2

addr_match, 4

addr_match_geocode, 5

addr_match_street (addr_match), 4

addr_match_street_name_and_number
(addr_match), 4

addr_match_tiger_street_ranges, 7

addr_tag, 8

as_addr (addr), 2

cagis_addr, 9
clean_address_text, 10

elh_data, 10
expand_post_type, 11

get_tiger_block_groups, 12
get_tiger_street_ranges, 12

s2_join_tiger_bg, 13
tiger_states, 13
usaddress_tag, 14

voter_addresses, 14

	addr
	addr_match
	addr_match_geocode
	addr_match_tiger_street_ranges
	addr_tag
	cagis_addr
	clean_address_text
	elh_data
	expand_post_type
	get_tiger_block_groups
	get_tiger_street_ranges
	s2_join_tiger_bg
	tiger_states
	usaddress_tag
	voter_addresses
	Index

